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Glossary 
Adherence   Filling or refilling drug prescriptions on time 

Compliance   Taking medication on time 

Drug development tool Tools, such as methods, materials, or measures that facilitate drug 

development 

Free equivalent combination Separate components of a corresponding fixed-dose combination  

Pharmacodynamics The relationship between the concentration of a pharmaceutical drug 

and the effect of that drug 

Pharmacokinetics The liberation, absorption, distribution, metabolism, and excretion of 

pharmaceutical drugs  

Substance status  The approval state of each component in a fixed-dose combination  
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Summary (English) 
The use of combination drug therapies is central to the successful treatment of several diseases, 

where monotherapies are not efficacious enough or where resistance to treatment emerges. The 

development of new drug combinations is, therefore, a major focus. This is also true for fixed-dose 

combinations, where there has been a rise in approvals in recent years. Developing fixed-dose 

combinations often involves conducting large factorial design studies to verify the efficacy of the 

combination. With a greater focus on the personalization of medicines, several dose levels of fixed-

dose combinations will need to be available for patients. For a factorial design study, this will result 

in very costly clinical trials. In order to keep developmental costs low and guide drug development, 

the validation of existing tools, and the development of new tools is necessary. Such model-based 

tools used for the analysis of fixed-dose combinations are, however, only in their infancy. 

Therefore, it was the overall aim of this PhD thesis to explore, develop, and validate the use of 

modeling tools for the development of fixed-dose combinations. The conducted research in this 

thesis resulted in three publications, which addressed the overall aim and objectives of the thesis. 

In the first paper, the underuse of model-based approaches in the development of fixed-dose 

combinations was identified for the fixed-dose combinations approved by the European Medicines 

Agency (58% of approvals). Additionally, although interesting strategies were employed to reprofile 

drugs and utilize prior knowledge to avoid dose-finding trials, very few fixed-dose combinations 

were geared towards personalization or could be considered innovative. Furthermore, the 

importance of pharmacokinetic modeling in selecting the correct doses was highlighted in the study. 

In the second paper, clinical trial simulations were performed to assess the feasibility of performing 

longitudinal exposure-response modeling of fixed-dose combinations. In a previous study, 

exposure-response analysis of fixed-dose combinations had been shown to cause an inflated false 

positive rate. In the present research, this was avoided by employing longitudinal exposure-

response to analyze fixed-dose combinations. Thus, longitudinal exposure-response analysis 

constitutes a new method for fulfilling the regulatory requirement of demonstrating each 

component's contribution to the overall effect.  

In the third paper, combination models were evaluated in a preclinical breast cancer study. A novel 

combination was analyzed for its potential pharmacodynamic interaction by employing the general 

pharmacodynamic interaction model. Based on this model, the combination was characterized as 

synergistic with one compound increasing the potency of the other by up to 60% when administered 

together. Additionally, analysis of the model provided insights into optimal dose ratios, which can 

be used to guide further investigations of the combination. 

In conclusion, this PhD thesis explored the current state of model-based development of fixed-dose 

combinations, developed a new methodology for the evaluation of fixed-dose combinations, and 

validated existing tools for the analysis of fixed-dose combinations. Based on the research 

conducted in this thesis, the overall recommendation is that modeling tools should to a greater 

extent be incorporated in the development of fixed-dose combinations as they assist in determining 

efficacy and provide valuable information to guide development. 
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Summary (Danish) 
Brugen af kombinationsbehandling er central for den vellykkede behandling af flere sygdomme, 

hvor monoterapier ikke er effektive nok, eller resistens overfor behandling opstår. Udviklingen af 

nye lægemiddelkombinationer er derfor et stort fokus. Dette gælder også for fixed-dose 

combinations, hvor der har været en stigning i godkendelser i de senere år. Udvikling af fixed-dose 

combinations involverer ofte udførelse af store faktorielle kliniske studier for at verificere 

kombinationens effektivitet. Med et større fokus på personalisering af medicin, skal flere 

dosisniveauer af fixed-dose combinations være tilgængelige for patienter. For et faktorielt design 

vil dette resultere i meget dyre kliniske forsøg. For at holde udviklingsomkostningerne lave og 

vejlede lægemiddeludvikling, er validering af eksisterende og udvikling af nye værktøjer nødvendig. 

Sådanne modelbaserede værktøjer, der bruges til analyse af fixed-dose combinations, er imidlertid 

kun i deres begyndelse. 

Det var derfor det overordnede mål med denne ph.d. afhandling at undersøge, udvikle og validere 

brugen af modelleringsværktøjer til udvikling af fixed-dose combinations. Forskningen i denne 

afhandling resulterede i tre publikationer, som opfylder afhandlingens overordnede mål og delmål. 

I den første publikation blev manglende brug af modelbaserede tilgange til udvikling af fixed-dose 

combinations identificeret for fixed-dose combinations godkendt af European Medicines Agency 

(58% af godkendelser). Det blev vist, at selvom der blev anvendt interessante strategier til at 

reprofilere lægemidler og anvende forudgående viden for at undgå dose-finding, var meget få fixed-

dose combinations rettet mod personalisering eller kunne betragtes som innovative. Desuden blev 

vigtigheden af  farmakokinetisk modellering ved valg af de korrekte doser understreget i studiet. 

I den anden publikation, blev simulering af et klinisk studie udført for at vurdere muligheden for at 

udføre longitudinal exposure-response modellering af fixed-dose combinations. Exposure-response 

analyse af fixed-dose combinations har i et tidligere studie vist sig at forårsage en forhøjet falsk 

positiv rate. Forskningen i nærværende studie viste at longitudinal exposure-response var i stand til 

at analysere fixed-dose combinations uden den forhøjede falsk positive rate, der var set i det 

tidligere studie. Longitudinal exposure-response giver derfor en ny metode til at opfylde det 

regulatorisk krav om at demonstrere hver enkelt komponents bidrag til den samlede effekt. 

I den tredje publikation blev kombinationsmodeller evalueret i en præklinisk 

brystkræftundersøgelse. En ny kombination blev analyseret for dens potentielle farmakodynamiske 

interaktion ved anvendelse af the general pharmacodynamic interaction model. Baseret på denne 

model blev kombinationen karakteriseret som synergistisk hvor den ene komponent øgede den 

andens styrke med op til 60%, når de blev administreret sammen. Derudover gav analyse af 

modellen indsigt i optimale dosisforhold, som kan bruges til at guide yderligere undersøgelser af 

kombinationen. 

Denne ph.d. afhandlingen undersøgte den aktuelle tilstand af modelbaseret udvikling af fixed-dose 

combinations, udviklede en ny metode til evaluering af fixed-dose combinations og validerede 

eksisterende værktøjer til analyse af fixed-dose combinations. Baseret på den forskning, der er 

foretaget i denne afhandling, er den overordnede anbefaling, at modelleringsværktøjer i højere grad 

skal indarbejdes i udviklingen af fixed-dose combinations, da de hjælper med at bestemme effekt 

og give værdifulde oplysninger til at guide udviklingen.  
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1    Aim & Objectives 

Combination drug therapy is becoming a central part of the treatment strategies for many diseases 

where monotherapy so far has not given sufficient efficacy or where resistance to treatment 

emerges [1–3]. Thus, more drug combination products can be expected to be developed in the 

future. The standard practice for verification of efficacy for fixed-dose combinations is the factorial 

design study in which the individual components are compared to the combination across all 

investigated dose levels [4]. Given the trend towards personalized medicine, it is increasingly 

important to discover alternatives to the factorial design study [5]. The factorial clinical trial is costly, 

and it is challenging to perform this type of clinical trial when the number of investigated dose levels 

increase [5]. To ensure lower developmental costs and easier access to the market, it is important 

to avoid superfluous investigations by performing the correct and necessary clinical experiments 

from the beginning. To that end, in silico methods provide tools that can assist in parts of the 

development process and provided valuable information to guide the drug development, thereby 

saving time and resources [6–9]. However, the tools and models for analyzing fixed-dose 

combinations are only in their infancy. 

Thus, the focus of this project and the overall aim is to evaluate, develop, and validate modeling 

tools for the development of fixed-dose combination products.  

1.1 Objectives 

The specific objectives of the project were: 

1. To assess the current practice of the use of modeling as a drug development tool 

for the development of fixed-dose combinations in the European Union, based on 

the information available in European Public Assessment Reports (EPARs) 

published by the European Medicines Agency (EMA) 

2. To develop new methods that may assist in the drug development process of fixed-

dose combinations, thus providing novel methodologies, which may be considered 

by the relevant regulatory authorities when approving fixed-dose combinations 

3. To validate combination models on preclinical data of a combination under 

investigation and assessing the value of applying these models in guiding further 

investigations of the combination 
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2    Introduction 
In the present thesis, boundaries were established for the objectives to facilitate focused 

investigations. Overall, both combination therapies and fixed-dose combinations were considered 

part of the scope for the project, depending on the objective that was considered. Specifically, when 

concerning research questions that arose from legislation about drug development, only fixed-dose 

combinations were considered as part of the scope. This was decided as the development of fixed-

dose combinations are addressed in a separate set of guidelines. Thus, for the first and second 

objectives of the project, only fixed-dose combinations are evaluated. For the third objective, no 

distinction was made between combination therapies and fixed-dose combinations. Both 

combination therapies and fixed-dose combinations were included, since the mathematical 

modeling of two pharmaceuticals in combination is, in general, applied in the same way, regardless 

of being administered as two separate components or as a fixed-dose combination [10]. 

Several markets could be selected to assess the first objective of the project. The European market 

in the form of submission to individual countries, the EMA, and the American market in the form of 

submissions to the Food and Drug Administration (FDA) were all considered. The EMA was chosen 

as the focal point of the discussion as the FDA has previously been the subject of several publications 

on the topic [11–13]. Five previously published studies on the analysis of fixed-dose combination 

approvals are summarized in Table 1. Furthermore, data from EMA is readily available to the public 

through the EPARs. Despite not being the aim for this objective, the FDA was used as a comparison 

for discussion. 

Several disease areas could have been considered when analyzing fixed-dose combinations, the 

most prominent being cardiovascular, metabolic, and infectious diseases [5]. An even wider scope 

could have been considered when addressing combination therapy in its entirety. Cancer is a disease 

area in which combination therapy is paramount to treatment success [14]. Here, greater efficacy 

is in focus, but circumventing the emergence of resistance to treatment is equally or more essential 

[14]. 

For the second objective, the regulatory guidelines set forth by the EMA is used as a starting point, 

similarly to that of the first objective. Furthermore, a combination used for the treatment of 

diabetes is chosen as it represents a major group of fixed-dose combinations under development.  

In the third and final objective, a combination for the treatment of cancer is analyzed, as these 

represent a complex and multifaceted combination in a field were combination treatment is of 

major importance. 

The topics, which have been briefly introduced above, are presented and discussed in greater detail 

in the following sections.  
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Table 1 – Summary of five previously published studies on the analysis of fixed-dose combination approvals 

Study Aim Main finding(s) 

Fixed-Dose Combination 

Drug Approvals, Patents, 

and Market Exclusivities 

Compared to Single Active 

Ingredient Pharmaceuticals 

[11]. (2015). 

To assess the exclusivity life of 

fixed-dose combinations and 

the time between approval of 

single drugs and the 

corresponding fixed-dose 

combination approved by the 

FDA. 

Fixed-dose combinations were approved 

5.43 years after the single drugs. They 

entered the market 2.33 years prior to 

generic single drugs. Lastly, they added 

9.70 years to the exclusivity life. 

Fixed-dose combination 

and single active ingredient 

drugs: A comparative cost 

analysis [12]. (2016). 

To assess price differences 

and pricing structures of fixed-

dose combinations and 

corresponding single drugs 

approved by the FDA. 

 

 

The fixed-dose combinations were on 

average 83.3 ± 23.4% of the cost of the 

single drug, based on average wholesale 

price. This difference in price was 

correlated with the year of approval, the 

number of generics available of 

components in the combination, and the 

therapeutic class. 

An Analysis of the Fixed-

Dose Combinations 

Authorized by the 

European Union, 2009-2014 

[15]. (2015). 

To assess the effects of the 

negative connotations 

associated with fixed-dose 

combinations following the 

bans in the mid- to late 20th 

century as well as 

characterizing the reasoning 

for the Authorization by the 

EMA. 

 

Stricter guidelines and regulations were 

found for fixed-dose combinations 

following the bans. Examples of 

regulatory flexibility was seen when 

given proper justification. The main 

reason for authorization was increased 

efficacy. 

 

Analysis of Fixed-Dose 

Combination Products 

Approved by the US Food 

and Drug Administration, 

2010-2015: Implications for 

Designing a Regulatory 

Shortcut to New Drug 

Application [13]. (2017). 

To assess the development 

process of fixed-dose 

combinations approved by the 

FDA and guide the 

development of these 

products in the US. 

 

Approval of the fixed-dose combinations 

was granted even if the full phases of 

clinical development was not 

completed. This highlighted a 

development strategy where phases can 

be exempted if proper justification is 

provided. 

 

Investigation of Approval 

Trends and Benefits of New 

Fixed-Dose Combination 

Drugs in Japan [16]. (2019). 

To assess the trends and 

benefits of fixed-dose 

combinations approved in 

Japan using a questionnaire 

survey 

 

Cardiovascular agents were the largest 

therapeutic group. Compliance of 

bronchial asthma patients improved by 

30.8% when taking fixed-dose 

combinations. Prescribers reported a 

decreased time and effort to prescribe 

the fixed-dose combinations. 

 

The study title, aim, and the main finding(s) of the study are presented for each of the five previously published studies 
on the analysis of fixed-dose combination approvals. 
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2.1 Fixed-dose combinations 

Fixed-dose drug combinations are a subset of combination therapies containing two or more active 

ingredients in a single dosage form. Combining two or more active ingredients in a single dosage 

form enables distinct advantages and challenges for the development and use of fixed-dose 

combinations. The following section outlines the current stance on the advantages, use, and 

development of fixed-dose combinations as well as the rationale for combination therapies. 

2.1.1    Combination therapy 

Combination therapies involve the concurrent treatment of diseases with two or more 

pharmacologically active compounds. The underlying principle for this approach is the ability to 

target several biological pathways simultaneously [1, 17]. Advances in high-throughput genome 

sequencing, loss- and gain-of-function methods, and several screening approaches have allowed 

increased ability to describe these underlying biological pathways in a healthy and disease state [18, 

19]. This description leads to a greater understanding of the disease and the possible biological 

redundancies that are in place, as well as the potential for the development of resistance to 

treatment [17]. Additionally, the understanding of diseases as the product of a perturbed network 

of biological pathways has enabled the identification of molecular targets for combination therapies 

[20].  

There exist many purposes for targeting multiple pathways simultaneously. Pharmacokinetic drug 

interactions are, in many cases, undesirable as they can alter the exposure of co-administered drugs 

and thereby cause adverse events and/or treatment failure [21]. However, some combination 

therapies are specifically developed to alter the pharmacokinetics of a compound. The combination 

of cobicistat and darunavir for the treatment of Human immunodeficiency virus (HIV) makes use of 

this principle. Cobicistat inhibits CYP3A4 and CYP2D6, which are the main metabolizers of darunavir, 

thereby increasing the exposure of darunavir [22]. 

Other combination therapies make explicit use of the components not interacting directly. In the 

treatment of the cancer subtype, diffuse large B-cell lymphoma, the use of a 5-component chemo-

immunotherapy agent termed R-CHOP is the current standard of care [23]. The advantage of this 

combination arises from targeting separate pathways, thereby limiting the cross-resistance that can 

develop to the treatment [24].  

Another approach to take advantage of targeting multiple pathways at the same time is by affecting 

a specific biomarker from multiple angles. Targeting multiple pathways is often the case for 

diabetes, where the regulation of blood glucose is central to controlling the disease. In combinations 

for treating diabetes, pathways that affect the distribution and excretion of glucose are often 

targeted. In the case of the linagliptin and empagliflozin combination, linagliptin causes lower blood 

glucose through increased blood concentration of incretins and empagliflozin inhibits reuptake of 

glucose in the kidneys, thereby increasing the excretion of glucose. By administering the compounds 

together, a greater efficacy is achieved through a synergistic pharmacodynamic effect [25]. 

Thus, the development of combination therapies have been subject to increased focus in recent 

years [2, 3] and has become an essential part of the successful treatment of several diseases [1]. 



 

 

P a g e | 16 

Examples of the importance of combination therapy can be found as far back as the 1950s, where 

the combination of streptomycin and isoniazid led to greater cure rates of tuberculosis [26]. A more 

recent example is the extensive use of combination therapies for the treatment of HIV. The 

introduction of the Highly Active Antiviral Retrovirus Therapy (HAART) caused HIV to be considered 

a chronic illness rather than a death sentence. However, HAART also causes notable adverse events, 

and therefore, HAART highlights one of the limitations of combination therapy, namely toxicity [27]. 

Several other disease areas make use of combination therapies with notable areas, including cancer, 

cardiovascular disease, and metabolic diseases. An interesting perspective from cardiovascular 

diseases is the association with metabolic diseases. Due to this association, the combinations are 

often aimed at addressing the underlying issues for both the cardiovascular and metabolic disease, 

such as high blood cholesterol [28]. Cancer and metabolic diseases will be addressed in further detail 

in section 2.2. 

Fixed-dose combinations utilize the same principles that make combination therapy essential. The 

class of compounds can be considered a subset of the overall combination therapy group, with fixed-

dose combinations being different by being formulated as a single dosage form. This aspect provides 

both advantages and disadvantages, which are largely dependent on the disease area.  

2.1.2    Fixed-dose combination background 

Fixed-dose combinations exist in many different forms. They are present as products ranging from 

household ware to advanced medicines. One of the most common fixed-dose combinations are 

probably the multivitamin preparations. These contain upward of 20 active ingredients and 

represent a rather extreme example of fixed-dose combinations. WHO’s list of essential medicines 

includes approximately 40 drug combinations of which most are available as fixed-dose 

combinations [29]. However, the WHO states that “not all of the fixed-dose combinations in the 

WHO treatment guidelines exist, and encourages their development and rigorous testing.” [29]. 

Despite being common, the reputation of fixed-dose combinations suffered a setback in the 1950s 

[30]. This was brought about by combining diuretics with potassium chloride. The underlying reason 

for making this combination is that a side effect of diuretics is the removal of potassium in addition 

to the intended sodium removal. Thus, potassium tablets were often given in conjunction with the 

diuretic. However, when the fixed-dose combination of the two was administered, it resulted in 

several cases of punctured stomach lining, which required surgery [30]. Thus, fixed-dose 

combinations were subsequently associated with negative connotations [30]. 

More recently, a similar issue related to the reputation of fixed-dose combinations has occurred in 

India. Here, the development of fixed-dose combinations had been very popular, with a total of 

1306 approvals in the period from 1961 till 2019 across all therapeutic areas [31]. The rationale 

behind a large amount of these approvals have been insufficient, as many combinations were 

developed either solely for marketing interests or were developed with neither theoretical 

justification nor evidence [32]. Over the last decade, this had led to 294 licenses being withdrawn, 

the use of 344 fixed-dose combinations being prohibited, and 328 bans being issued by the central 

government [31]. The issues in India underlines that while combinations can be a powerful tool; 
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ensuring the validity of the underlying rationale for combining pharmaceutical compounds is of 

utmost importance. 

In other areas of the world with greater cognizance of the regulatory framework, such as the United 

States of America with the FDA and the European Union with the EMA, fixed-dose combinations 

have seen a rise in approvals [5, 11, 13, 16]. The reemergence of fixed-dose combinations and the 

revitalized focus on developing them could stem from an unmet medical need, as monotherapies 

provide insufficient efficacy in several disease areas. However, filling this unmet medical need is not 

exclusive to fixed-dose combinations, as all combination therapies can fill this gap. The following 

section addresses advantages, which are tied to fixed-dose combinations. 

2.1.3    Advantages of fixed-dose combination  

There are several areas where fixed-dose combinations show advantages over the free-equivalent 

combinations (FEC). FEC constitutes the same active ingredients as the fixed-dose combination, but 

in two or more dosage forms. One of the main clinical advantages is the increased adherence to 

treatment due to a lower medication burden, which has been demonstrated in numerous studies 

and across several disease areas [33, 34]. In an example from type 2 diabetes mellitus (T2DM), an 

analysis of seven studies was conducted, where the fixed-dose combinations were compared to the 

FEC. Here the fixed-dose combinations were associated with a 13% greater adherence [35]. Another 

example within T2DM assessed the HbA1c levels in 6000 European patients across multiple 

nationalities, taking either fixed-dose combination or the FEC [36]. Here the advantage of taking the 

fixed-dose combination manifested through a 0.25% lower level of HbA1c, thus providing better 

glycemic control than the FEC counterpart [36]. Another interesting point in the study was a 

comparison between patients classified as either compliant or non-compliant. Here, the compliant 

patients were found to be five times more likely to be taking the fixed-dose combination than the 

non-compliant patients. Similar results for increased adherence has been seen within the treatment 

of hypertension [34, 37] and cardiovascular disease [38].  

So far, only the clinical benefits of fixed-dose combinations have been discussed. Another, less 

obvious advantage, which creates focus on fixed-dose combination development, is the extension 

of patents.  

When inventing novel drugs, a patent ensures the protection and market exclusivity for the 

developing company for 20 years [39]. A substantial amount of this period can be spent in the 

developing phase, during testing and clinical trials. Following development, companies typically 

have between 7-12 years to make a profit on the investment, before generic drug companies enter 

the market [40]. Here, fixed-dose combinations can provide an avenue to extend the commercial 

lifespan of the compound by combining the newly patent expired compound with another non-

patented or patented compound. However, this strategy is dependent on either the newly 

combined product being superior to existing treatment, thereby enabling the option for obtaining 

a patent for the combination, or convincing prescribers to switch to the combination, which would 

not currently have competition from generic medicines.  
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Several strategies exist for minimizing the commercial risk of developing fixed-dose combinations 

and providing a superior product. Combining patent expired product with the current standard of 

care treatment is a common approach. For instance, this is the basis for many fixed-dose 

combinations within diabetes care. Here metformin is combined with a range of different products, 

resulting in a convenience product consisting of the patent expired best-in-class drug and the 

standard treatment [5, 41]. Another strategy is the collaboration of competing companies to create 

new fixed-dose combinations using their patent expired stand-alone products. This approach has 

been shown to be particularly successful [42]. Examples of this include Atripla®, a three-component 

fixed-dose combination for the treatment of HIV. Competing companies Gilead and Bristol-Myers 

Squibb developed Atripla®, which in the first six months after launch, had achieved sales for over 

$200 million [42]. An example within hyperlipidemia is the joint development of Vytorin® by Merck 

and Schering–Plough, which combined ezetimibe and simvastatin to lower blood cholesterol 

concentrations [42]. 

Allowing the purchase of both the fixed-dose combination and the separate components seems to 

be an important consideration. This was showcased by the public backlash Pfizer faced in 2006 when 

they planned to discontinue torcetrapib and only sell it as part of their new fixed-dose combination 

Lipitor® [43]. 

Pursuing the option of convincing prescribers to switch to the new combined product will be largely 

dependent on cost. There are several cost-related advantages of fixed-dose combinations. Firstly, 

the cost of the fixed-dose combination is commonly comparable to or lower than the total cost of 

the components [33]. Secondly, the co-pay by the patients may be reduced, as only one co-pay is 

required for the fixed-dose combination in comparison to the several that may be required for the 

components separately [33]. An important consideration when considering cost is the different 

national reimbursement systems that exist within the EU [44]. It is usually local committees, which 

determine if a fixed-dose combination is eligible for reimbursement [44]. Thus, patients are not 

directly in control of whether they receive the FEC or fixed-dose combination as they are influenced 

by the decisions of the local health care systems. The various reimbursement systems are very 

complex [44], therefore, further discussion of the topic is considered outside the scope of this thesis. 

It has been demonstrated within antihypertensive medication that patients on a fixed-dose 

combination had a lower prescription and total medical cost compared to the patients on the same 

medication but in FEC [45]. A broader analysis across multiple therapeutic areas found similar 

results, that is that the average wholesale price of fixed-dose combinations are on average lower 

than the total cost of the FEC [12]. Interestingly, this analysis highlighted that the difference in cost 

between the fixed-dose combination and the FEC is highly dependent on the therapeutic area. 

Furthermore, the study analyzed the price point selection of the fixed-dose combination and 

determined that it was most often set to the price of the costliest single agent in the combination. 

Selecting this price point was done in order to shift the demand from generics towards the fixed-

dose combination [12]. 
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It has been demonstrated, in some cases, that the immediate out-of-pocket costs of fixed-dose 

combinations may be higher than for their FEC, but that the total long term or intangible costs were 

lower [46, 47]. Furthermore, it has been shown that a fixed-dose combination can lead to fewer 

clinic visits and laboratory tests, which further reduces the overall cost of treatment [47]. However, 

the opposite pattern has also been observed in some cases. Here the total cost of fixed-dose 

combinations is initially lower, but once the generics enter the market, the FEC becomes the 

cheaper option [48]. An important consideration here is that an increase in cost has been shown to 

associate with lower adherence [49]. Thus, identifying the cheapest option for patients is important 

for ensuring adequate treatment.  

Overall, analyzing the marketing strategy for fixed-dose combinations with regards to costs is 

multifaceted. Providing a better standard of care through combining the best in class products with 

the standard care in a fixed-dose combination and making it available at the same or lower cost than 

the FEC is a major selling point of fixed-dose combinations. However, it can be argued that the 

strategy of extending patents through the development of fixed-dose combination can lead to a 

greater degree of questionable marketing strategies. In particular, this could be the case if ensuring 

the extension of the product lifespan is the sole motivation behind development.  

2.1.4    Development of Fixed-dose combinations 

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 

Human Use (ICH) is an association that works to harmonize regulatory policy across its 16 members 

and 32 observers [50]. Consequently, guidelines developed by agencies such as the EMA and FDA 

are highly influenced by the ICH guidelines. The development of fixed-dose combinations is subject 

to a separate set of guidelines from the conventional drug development guidelines [51, 52]. 

Currently, there is no ICH guideline specific to combination drugs, instead, the ICH monotherapy 

guidelines serve as a framework for the development of fixed-dose combinations [53].  

Each of the major agencies, which govern drug development, has its own distinct set of guidelines 

on the development of fixed-dose combinations, which has been the topic of several publications 

[41, 54]. In the European Union, the EMA has compiled the guideline “Guideline on clinical 

development of fixed combination medicinal products”, which came into effect in 2017 [51]. In the 

United States of America, the FDA provides two guidance documents relating to fixed-dose 

combinations and combination therapy. For fixed-dose combinations, the document “Fixed Dose 

Combinations, Co-Packaged Drug Products, and Single-Entity Versions of Previously Approved 

Antiretrovirals for the Treatment of HIV” from 2006 and for combinations therapy the document 

“Codevelopment of Two or More New Investigational Drugs for Use in Combination” from 2013 [52, 

55]. Lastly, the World Health Organization (WHO) has written a guideline for fixed-dose 

combinations “Guidelines for registration of fixed-dose combination medicinal products” from 2005 

[56]. 

The overarching theme for all the guidelines on fixed-dose combination is summarized well in the 

EMA’s three overall requirements [51]: 

1. Justification and rationale for the combination  
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2. Demonstrating the contribution of all active substances to the desired therapeutic effect  

3. The evidence presented is relevant to the fixed combination medicinal product (important if the 

evidence is based on the administration of separate active substances in combination) 

Another important consideration made by these agencies is based on the approval status of the 

components of the fixed-dose combination. Here four scenarios outlined in the WHO guideline 

provide a summary that matches the consideration made in all the guidelines [56]. The four 

scenarios of fixed-dose combinations that can be considered for approval are summarized here: 

1. Generic fixed-dose combination of an already existing fixed-dose combination 

2. Fixed-dose combination in the same dosage as two separate compounds that are administered 

as part of an existing treatment regimen  

3. Fixed-dose combination of two compounds not previously combined or combined in new 

dosage regimen 

4. Fixed-dose combination containing one or more new chemical entities 

 

Figure 1 – Schematic to guide the feasibility of fixed-dose combination development with two or more approved 
compounds. FDC: Fixed-dose combination; NI: No Interaction; PD: Pharmacodynamic; PK: Pharmacokinetic; SI: 
Significant Interaction. The figure is from [57]. 
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Justification for the combination can range from an improvement in benefit/risk to utilizing drug-

drug interactions that, for instance, circumvent resistance development or cause non-efficacious 

compounds to become effective [51]. Examples of this are mentioned in section 2.1.1. Importantly, 

simplification of the treatment is not sufficient to constitute a rationale for the combination [51].  

Based on each of the four scenarios, and the justification behind combining the components, the 

evidence base supporting the combination can be required to be appreciably larger or smaller. 

Specifically, it has been shown that the evidence base, measured as the number of patients, arms, 

and clinical trials, increases when one or more new molecular entities are included in the fixed-dose 

combination [5]. 

The simple scenario involves combining two already approved compounds in a fixed-dose 

combination. A schematic of a decision-making process for developing this type of fixed-dose 

combination is shown in Figure 1.  

As seen in the schematic, for this type of fixed-dose combination, the most important aspect 

becomes to determine if drug-drug interactions occur in the pharmacokinetics (PK) or 

pharmacodynamics (PD) of the compounds. The purpose of investigating drug-drug interactions in 

PK is to determine if the LADME profiles of the compounds are altered in each other’s presence [21, 

58]. For fixed-dose combinations, the general expectation is that the presence of both compounds 

do not affect the PK profiles [57]. However, in some distinct cases, the purpose of the combination 

is to affect the PK profile of one compound, such as for cobicistat and darunavir discussed in section 

2.1.1. 

PD interactions are much more complicated to analyze. PD interactions can broadly be categorized 

into three categories.  

 The first describes fixed-dose combination with no PD interactions, which would 

theoretically provide at higher efficacy than either of the components alone  

 The second includes fixed-dose combinations with a negative interaction, which would result 

in terminating the development process.  

 The third group constitutes fixed-dose combinations with a positive interaction, which is the 

most promising group of drug-drug combinations. This group is arguably the most innovative 

combinations, which utilize drug-drug interaction to achieve higher efficacy or safety.  

A more complex scenario than combining two previously approved compounds is to develop one or 

more new molecular entities as part of a fixed-dose combination. Of the total two-component fixed-

dose combination approved from 2010-2016 by EMA, 36% included one new molecular entity and 

5.5% included two new molecular entities in the combination [5]. Ideally, the focus when developing 

this type of fixed-dose combination is to establish the safety and efficacy of the components 

separately before analyzing the combination. Thereby, the development follows a similar pattern 

to using approved compounds after the safety and efficacy are established for the monotherapies. 

There may however be cases where this is not feasible. This is the case when the components alone 

cause rapid resistance development in certain diseases such as HIV and microbial diseases [51, 55].  
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Demonstrating the contribution of each of the components to the overall effect is a central part of 

adhering to the requirements for fixed-dose combination development. This is the second overall 

requirement outlined earlier from the EMA and referred to in article §300.50 “Fixed-combination 

prescription drugs for humans” from the FDA, which is often termed “the combination rule” [51, 

59]. The standard approach to achieve this is to perform a factorial clinical trial in which multiple 

doses of each component is compared to the combination, and the effect of A+B is demonstrated 

to be greater than that of either A or B [4]. This approach is obviously not feasible for the combined 

new molecular entities causing resistance when administered separately, and therefore, the 

approach is here to compare the combination to the standard of care [51, 55]. 

Other considerations for the development of fixed-dose combination include bioequivalence 

studies and the dosing intervals of the components. As part of the development package for fixed-

dose combinations, it is expected to demonstrate the bioequivalence of the fixed-dose combination 

to each of the components [51, 52, 57]. For fixed-dose combinations composed of previously 

approved drugs, the bioequivalence studies can make up a substantial part of the development 

program, as other parts of the development program, such as dose-finding, can be excluded [5]. 

Achieving bioequivalence for a fixed-dose combination presents several challenges depending on 

the differences in dosage forms, formulations, and LADME profiles of the fixed-dose combination 

and the individual mono-components [60]. Depending on these differences it can be considered 

significantly more challenging to demonstrate bioequivalence between a fixed-dose combination 

and the individual mono-components than between two formulations of the same active ingredient 

[60]. While bioequivalence is important for fixed-dose combination development overall, the topic 

is not part of any studies conducted in the present thesis and is therefore not discussed in further 

detail. Dosing intervals present an issue when combining compounds with very different half-lives, 

as it often results in different frequency of administration. Thus, a modification of the regimen will 

be necessary for development to continue. Similarly, opposite administration conditions, such as 

fasting/fed condition, can cause the development to be unfeasible.  

2.1.5    European Public Assessment Reports 

EPARs are a public compilation of documents published by EMA, which pertain to the evaluation of 

drug authorizations through the centralized procedures at EMA [61]. The documents include 

information on “clinical aspects”, “clinical efficacy”, and “clinical safety”, as well as “Product 

information”, and “Authorized presentations”. While not specifically relating to fixed-dose 

combinations, the documents were used as the basis for the first paper discussed in the summary 

of results (section 3.1). 
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2.2 Combination therapy in diabetes & breast cancer 

The present thesis is not limited to specific disease areas; however, during the experimental phase, 

two disease areas became the focus of the second and third papers. In this section, the two disease 

areas, diabetes and breast cancer, will be presented briefly in the context of combination therapy 

with a focus on the areas important to the research conducted in this thesis.  

2.2.1    Type 2 diabetes mellitus 

T2DM is a metabolic disease characterized by failure to regulate carbohydrate levels in the 

bloodstream [62]. T2DM constitutes more than 90% of all diabetes cases and is, therefore, the most 

common subtype [62]. The dysregulation of the carbohydrates arises from several underlying 

mechanisms, Figure 2. The understanding of these mechanisms is rapidly evolving. Currently, the 

understanding is that the main cause is a combination of insulin resistance in skeletal muscle, liver, 

and adipose tissue, coupled with increasingly impaired insulin secretion from the pancreas [63]. This 

leads to a condition known as prediabetes and predisposes for the development of T2DM, which is 

hallmarked by hyperglycemia [63, 64].  

 

Figure 2 – The origins of hyperglycemia in type 2 diabetes mellitus. Hyperglycemia arises from multiple sources of 
dysregulated carbohydrate regulation. Each dysregulated function represents potential drug targets for reestablishing 
the normal carbohydrate levels in the bloodstream. SGLT2, sodium/glucose co-transporter 2; AMPK, AMP-activated 
protein kinase; DPP4, dipeptidyl peptidase 4; IκB, inhibitor of NF-κB; MAPK, mitogen-activated protein kinase; NF-κB, 
nuclear factor-κB; RA, receptor agonist; ROS, reactive oxygen species; TLR4, Toll-like receptor 4; TNF, tumor necrosis 
factor; TZDs, thiazolidinediones. The figure is from [62]. 

As the illustration indicates, the pathogenesis of T2DM is complex and arises from multiple 

metabolic defects [62, 63]. Hyperglycemia arising from these metabolic defects is known to be a 

large factor in the risk of complications from diabetes [65]. Therefore, reaching normal blood 

glucose levels, often measured as the biomarker HbA1c (signifying glycosylated haemoglobin in 

blood cells), through blood glucose-lowering treatment is incredibly important [66]. Achieving this 
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glycemic target is the main goal of T2DM treatment through GLP1 analogs, DPP4 inhibitors, SGLT2 

inhibitors, thiazolidinediones, and metformin, Figure 2. However, there are issues with reaching the 

general goal of 7% HbA1c in many cases, as illustrated by a study in the U.S. from 2007-2010, where 

only 52.5% of individuals reached the target [67]. Hence, initiating therapy with only a single drug 

has been suggested not to be sufficient to ensure proper glycemic control [63]. Thus, targeting 

multiple parts of the pathogenic network is of interest, as it has been demonstrated to achieve 

increased glycemic control [66].  

A counterpoint to combination treatment T2DM is the heterogeneity of the disease that arises from 

the complex pathogenic network. For instance, some patients (5-10%) cannot tolerate metformin 

treatment [68] and would, therefore, need alternative combination products to achieve their 

glycemic targets. 

2.2.2    Triple-negative breast cancer 

Triple-negative breast cancer (TNBC) constitutes 15-20% of all breast cancers and is associated with 

onset at an early age, aggressive clinical course, and a very poor prognosis in comparison to the 

hormone receptor and HER2 positive breast cancers [69]. TNBC has a unique pattern of metastasis 

to other organs compared to the two other subtypes [70]. The pattern is characterized by a larger 

degree of brain and lung involvement and a lower degree of bone lesions [70]. Subtyping cancers 

based on protein expression and phenotype is an ongoing process, which for TNBC has led to 

additional subtyping into categories based on molecular characteristics [71]. Further subtyping is, 

however, outside the scope of TNBC discussion for this thesis.  

In the early stages of TNBC, the cancer cells are generally chemotherapy-sensitive; however, there 

is no defined optimal treatment strategy [72]. The most common initial step for more advanced or 

inoperable TNBC is neoadjuvant therapy, which includes anthracyclines, taxanes (such as 

docetaxel), and cyclophosphamide [72, 73]. Given the severity of the disease, there is a constant 

effort to identify and utilize new therapies for TNBC patients [69].  

As seen from the neoadjuvant therapy, combinations of two or more compounds that target specific 

pathways in the cancer cell is a cornerstone in cancer therapy [74].  

Drug resistance is a multifaceted phenomenon that spans inherent cell heterogeneity, alterations 

in drug targets, drug efflux, and morphological changes in the form of epithelial-to-mesenchymal 

transition, Figure 3. Due to the wide range of resistance mechanisms, combination therapy is 

considered as the best treatment option for all cancer. This is due to a lower risk of drug resistance, 

and because the combined therapies will generally be more effective than the monotherapies [74]. 

A general goal of combination therapy in cancer is to utilize drugs with different primary 

mechanisms, leading to low shared cross-resistance between the compounds [24].  
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Figure 3 – Primary mechanisms leading to drug resistance of the cancer cells. The primary mechanisms include inherent 
cell heterogeneity, alterations in drug targets, drug efflux, and morphological changes in the form of epithelial-to-
mesenchymal transition. EMT, epithelial to mesenchymal transition. The figure is from [74]. 

Precision medicine further adds to the complexity of TNBC treatment. Precision medicine aims to 

provide a tailored treatment to patients through the identification of not only general genetic 

variants but also specific pathway and network alteration, which can govern highly specific 

treatments of the individual cancer patient [75]. 

Based on the complexity and attempt of individualization of cancer treatment, it is no surprise that 

0% of approved fixed-dose combinations are within the field of cancer [5, 76]. Fixing the dosage or 

ratio between components is not feasible for combinations with the need for such a high degree of 

individualization. However, for the purposes of analyzing and modeling drug-drug combinations, it 

presents an interesting topic. 
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2.3 Pharmacokinetic-Pharmacodynamic Modelling & Simulation 

Pharmacokinetic-Pharmacodynamic (PK-PD) modeling and simulation were a part of the second and 

third paper in the present thesis. While standard model building in the form of sequential structural, 

stochastic, and covariate modeling was not performed, the same principles were applied for 

simulation and are therefore presented. Finally, analysis and modeling of data was performed using 

exposure-response modeling and combination modeling, which is discussed in the following 

sections. 

2.3.1    Background 

In essence, models provide a simplified and interpretable representation of systems that are of 

interest to the modeler [77]. In PK-PD modeling, the system that the modeler attempts to describe 

is the timecourse of drug concentration following administration (PK) as well as the link between 

that concentration and the effect of the drug (PD) [77].  

The value of modeling is substantial in all phases of drug development. In the preclinical phase, the 

focus is on determining potential drug candidates. Here modeling provides a way to characterize 

the potency, bioavailability, clearance, toxicity, and drug interactions [78]. In addition, it can be used 

to guide optimal sampling and dose ranges for further investigation [78]. Establishing a model early 

in development is essential for successfully utilizing modeling to guide drug development. The 

importance of establishing the model early on is due to the ability to constantly update the model 

through an iterative process as data become available [79].  

Throughout the clinical development, spanning phase I to III, the scope of modeling expands. In the 

early phases, there is a focus on accurately describing the PK relationships and estimating the 

probability of success given assumptions and trial designs [78]. In the later phases, confirmation of 

a valid PK-PD model and establishing the exposure-response relationship is in focus [78]. 

Importantly, these are all just examples of the goals that can be achieved using modeling but is not 

exhaustive. 

Within the regulatory agencies EMA and FDA, modeling and simulation are considered an important 

tool to support rational decision making throughout the development process. The EMA has 

released guidelines for physiologically based pharmacokinetic modeling and simulation as well as 

appointed a working party, which focuses on outlining the standards for employing modeling and 

simulation in drug development [6, 7]. Similarly, the FDA has published guidelines on 

pharmacokinetic modeling (currently in draft version in 2019) [8]. Additionally, the FDA has 

presented a talk on the topic termed “Advancing regulatory science with modeling and simulation 

at FDA”, in which they recognize how modeling and simulation can benefit public health [9].  

2.3.2    Population PK-PD modeling 

Population PK-PD models consist of three overall components: structural models, stochastic models, 

and covariate models.  

The purpose of the structural model is to describe the timecourse of the PK or PK-PD relationship. 

This description is achieved either through algebraic or differential equations [77]. In the case of PK 
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models, the structural model is often described by a compartmental model. A compartmental model 

typically consists of one to three compartments, with additional absorption compartments for 

extravascular administration. An example of the differential equation approach of a one-

compartment model with first-order absorption and elimination is shown in EQ1.  

The differential equation describes the rate of change in drug amount for the absorption 

“compartment” (1) and the central compartment (2). The equation is solved in very small time 

increments in order to minimize the computational errors. The estimated population parameters, 

here absorption rate constant kA, clearance (CL), and volume of distribution (V), from the structural 

model, are often termed thetas (θ). Through this approach and developments within algorithms, 

the difference between the algebraic solution and the differential equation is negligible but can 

come with a time cost depending on the complexity of the model [77].  

The PK is linked to the PD in a specified relationship, and through this relationship, the timecourse 

of the drug response is described [80]. This relationship can either be direct or delayed depending 

on the specification. For the direct PK-PD relationships, the plasma concentration is used directly in 

the description of the drug response, with relationships often being linear, log-linear, or non-linear 

(e.g., Emax relationship and sigmoidal Emax relationship), EQ2 [80]. The parameters in the models are: 

α, the intercept with the y-axis; β, the slope; 𝐶𝑑𝑟𝑢𝑔, the drug concentration; 𝐸𝑚𝑎𝑥, the maximal effect; 

𝐸𝐶50, the half-maximal concentration, and 𝐻𝑑𝑟𝑢𝑔, the Hill coefficient. 

𝐸𝑑𝑟𝑢𝑔 = β ∙ 𝐶𝑑𝑟𝑢𝑔 +  α;   𝐸𝑑𝑟𝑢𝑔 =  β ∙ log (𝐶𝑑𝑟𝑢𝑔) + α; 

   𝐸𝑑𝑟𝑢𝑔 =
𝐸𝑚𝑎𝑥,𝑑𝑟𝑢𝑔 ∙ 𝐶𝑑𝑟𝑢𝑔

𝐸𝐶50,𝑑𝑟𝑢𝑔 + 𝐶𝑑𝑟𝑢𝑔
  ;  𝐸𝑑𝑟𝑢𝑔 =

𝐸𝑚𝑎𝑥,𝑑𝑟𝑢𝑔 ∙ 𝐶𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔

𝐸𝐶50,𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔 + 𝐶𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔
 

(EQ2) 

For the delayed PK-PD relationships, the effect compartment model and the indirect response 

model (turnover model) are well established [80, 81].  

The effect compartment model is used when the site of drug action is different from the site of 

measured drug concentration [80, 81]. For instance, this can be the case if the site of drug action is 

in the brain. Thus, a delay in effect occurs, which is described by the first-order rate constant ke0 

between the observed concentration and a hypothetical effect compartment [80, 81].  

The indirect response attempts to capture the delay in effect that arises from targeting upstream 

components of a signaling cascade. In this model, the effect is asserted through stimulation or 

inhibition of the formation constant kin or the elimination rate constant kout of the response 

(endpoint) [80, 81]. An example where kin is inhibited is shown in Figure 4. This model is used in the 

simulations for the second paper of this thesis.  

 𝑑𝐴1

𝑑𝑡
= −𝑘𝐴 ∙ 𝐴1 

𝑑𝐴2

𝑑𝑡
= 𝑘𝐴 ∙ 𝐴1 −

𝐶𝐿

𝑉
∙ 𝐴2 

(EQ1) 
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Figure 4 – Overview of indirect response model with inhibition of kin. kin, formation constant of endpoint (response 
variable), kout, elimination rate constant of endpoint (response variable).  

The stochastic model attempts to capture the variability in the estimated parameters by adding 

random effects to the model. Random effects can span numerous factors, such as inter-individual 

variability, inter-study variability, and inter-occasion variability. The random effects are termed etas 

(η), which are usually assumed to be distributed normally or log-normally around zero with a 

variance (ω). 

For simplicity, the following example includes a theoretical parameter 𝑃, which varies log-normally 

between individuals, resulting in the individual parameter 𝑃𝑖, EQ3.  

Note that while the value of 𝜂𝑃𝑖  is normally distributed, applying it exponentially to 𝑃 produces the 

log-normal distribution. 

While the random effects represent the random unexplained variability, the covariate model 

attempts to explain the variability. Explaining the variability can be achieved through established 

relationships, such as that between body weight and volume of distribution or more specific 

considerations such as genotypes [77]. Covariate modeling is not a focus in this thesis; therefore, 

the topic is not introduced further. 

Determining the optimal model fit is based on model evaluation. Model evaluation can be based on 

numerous different numerical and graphical approaches. Some of the common numerical 

considerations are the Akaike information criterion (AIC), the Bayesian information criterion (BIC), 

and objective function value (OFV) [82, 83]. These values are used for model comparisons in various 

scenarios and represent how well the model fits the data. Parameter precision, in the form of 

standard errors, confidence intervals, bias, and shrinkage, are important for assessing model 

stability and robustness [82, 83]. For instance, high parameter imprecision can be a sign of an 

overparameterized model [82]. A general consideration for high imprecision is >30% SE for fixed 

effect and >50% SE for random effects [82]. Graphical diagnostics of the model are employed to 

identify model misspecification [83]. Examples of graphical diagnostics include conditional weighted 

residuals (CWRES) against independent variables (e.g., time, concentrations), observed versus 

population/individual predictions, and simulation-based visual predictive checks (VPC) [82, 83].  

Simulation from a PK-PD model is an important tool used for inference and model evaluation. 

Simulating unobserved data within the bounds of the data for the model can be done with some 

confidence, whereas simulating data outside the bounds requires confidence in the model used for 

simulation [77]. Simulating from a model that includes a stochastic model to allow for unexplained 

variability in the data requires the use of random number generators. An important consideration 

  𝑃𝑖 = 𝑃 ∙ 𝑒𝜂𝑃𝑖 , 𝜂𝑃𝑖  ~ 𝑁(0, 𝜔𝑃
2) (EQ3) 
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here is that when sampling from random distributions, the simulations need to be repeated [77]. In 

order to summarize the results as confidence intervals, 1000 simulations are usually recommended 

[77].  

2.3.3    Exposure-response analysis 

Exposure-response analysis attempts to describe a relationship between an exposure metric and a 

measured response variable. Several exposure metrics can be considered for this purpose, once the 

steady-state of the PK is reached. Common metrics include the area under the concentration-time 

curve (AUC), maximal drug concentration (Cmax), or the trough concentration, depending on the 

specific analysis [84]. The response variable is often a clinical endpoint, which is coupled to the 

exposure metric through linear or non-linear relationships presented in EQ2. Additionally, the 

exposure-response analysis can study either a single time point or be a timecourse analysis [84]. The 

single time point is often sufficient and a more common approach. However, timecourse analysis 

has advantages when inter-occasion variability is high, when the endpoint changes over time at 

steady-state PK, or if the data includes a high degree of dropouts [84].  

Exposure-response analysis has an advantage compared to pairwise comparisons due to the 

intrinsic variability in the PK that gives rise to a series of exposures for a given dose level and sample 

size [85]. This variability in exposures results in greater power to identify the exposure-response 

relationship. However, the variability in the exposures also constitutes a limitation of the analysis, 

as there is a lack of randomization of the exposures, whereas the dose used in the pairwise 

comparison is a controlled and randomized variable [85]. Another limitation is the susceptibility to 

undetected confounders in the model [84]. Confounders in exposure-response analysis is the 

implicit topic of the second paper in this thesis. Essentially the paper is based on the finding by Zhu 

& Wang, which demonstrates that exposure-response analyses of fixed-dose combinations lead to 

inflated false-positive rates [86]. Despite these limitations, exposure-response analysis is becoming 

a tool with an increasing role in regulatory decisions [87–90]. 

2.3.4    Combination modeling 

Combination modeling is performed to demonstrate that the effect of the combination is superior 

to the effect of the components [20]. This is typically achieved through characterizing the 

combination as either synergistic or antagonistic, corresponding to either higher or lower effect, 

respectively, than the expected additive effect. Defining the additivity criterion can be the most 

complex part of classifying a combination as synergistic or antagonistic, as opposing results can be 

obtained depending on the criterion selected [20]. An example of these opposing results is 

illustrated in Figure 5, where a synergistic combination within Bliss Independence can be considered 

antagonistic in Response Additivity. This is evident from the combination being below the additivity 

criterion (dashed line) for Response Additivity and above it for Bliss Independence, Figure 5. 
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Figure 5 – Overview of two effect-based approaches: Response Additivity (left) and Bliss Independence (right). Drug A 
effect: 30, Drug B effect: 20, Drug A+B effect: 48.  

Response Additivity, Bliss Independence, and Loewe Additivity are three common effect-based 

approaches for defining the additivity criterion [20, 91–93]. Loewe additivity and Bliss Independence 

is based on opposing mechanistic assumptions surrounding the compounds in the combination [94]. 

Loewe Additivity assumes that both compounds share the mechanism of action, thereby making the 

assumption that one compound can be substituted with the other. For Bliss Independence, the 

assumption is that the compounds have different mechanisms of action, leading to the addition of 

the component effects. Response Additivty rests on the principle that the effects of the combination 

are simply additive and that the dose-effect relationship is linear [20]. While Loewe Additivity is a 

common approach in combination modeling, it is not utilized in the present thesis, as the 

investigated combination components do not share the mechanism of action. Loewe Additivity is 

therefore not considered further. The mathematical equations for a combination of drug A and B 

using Response Additivity and Bliss Independence is shown in EQ4 and EQ5, respectively. 

 𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝑅𝐴 = 𝐸𝐴 + 𝐸𝐵 (EQ4) 

 

 𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝐵𝐼 = 𝐸𝐴 + 𝐸𝐵 − 𝐸𝐴 ∙ 𝐸𝐵 (EQ5) 

 

As given by EQ4, the additivity criterion for Response Additivity is the addition of the effect terms 

for compound A and B, while any observed effect above or below that level corresponds to synergy 

or antagonism, respectively [20]. For Bliss Independence, the additivity criterion is the product of 

the effect term for compound A and B, subtracted from the sum of the two. Furthermore, the effect 

terms are based on probabilities and are therefore constrained between 0 and 1. Thus, as the effect 

of the components increase, the 𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝐵𝐼 in EQ5 will approach a combined effect of 1 [20, 92]. 

While underlying mechanistic assumptions are made for Bliss Independence, it is important to note 

that there is no mechanistic basis for the model itself and therefore, it is solely an effect-based 

approach.  
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Preclinical modeling of cancer chemotherapeutics has previously been performed [95–98]. While 

the studies had different approaches to the modeling, they were all based on differential equations 

describing tumor growth. This approach has the advantage of being semi-physiological in nature, as 

it attempts to describe the growth cycle of the tumor. However, the drawback of this approach is 

that the drug effect is difficult to interpret as it is often described through kill rates. Furthermore, 

the models can be parameter intensive, thereby requiring a large amount of data.   

The general pharmacodynamic interaction (GPDI) model, is a relatively new model, which is 

considered in the third paper of the thesis. The model uses a semi-mechanistic approach and can 

be combined with both Response Additivity and Bliss Independence [99]. The GPDI model identifies 

victim and perpetrator drugs in one- or two-way interactions in the potency and/or maximal effect 

of the compounds. An example of a one-way interaction in the potency where drug A is the victim 

and drug B is the perpetrator is shown in EQ6. The parameters in the model are: 𝐸𝑚𝑎𝑥,𝐴 maximal 

effect of A, 𝐶𝐴 concentration of A, 𝐸𝐶50,𝐴 half-maximal concentration of A, 𝐼𝑁𝑇𝑚𝑎𝑥,𝐵→𝐴 maximal 

interaction of B on A, 𝐼𝑁𝑇50,𝐵→𝐴 half-maximal interaction concentration, 𝐶𝐵 concentration of B. 

 
𝐸𝐴 =

𝐸𝑚𝑎𝑥,𝐴 ∙ 𝐶𝐴

𝐸𝐶50,𝐴 ∙ (1 +
𝐼𝑁𝑇𝑚𝑎𝑥,𝐵→𝐴 ∙ 𝐶𝐵

𝐼𝑁𝑇50,𝐵→𝐴 + 𝐶𝐵
) + 𝐶𝐴

  
(EQ6) 

   

The advantage of the GPDI approach is that the estimated interaction parameters provide a way to 

quantify the interactions between the compounds. Identifying interaction in either the maximal 

effect or potency leads to greater interpretability of the interaction, which gives a semi-mechanistic 

understanding of the drug-drug interaction. Furthermore, identification of perpetrator and victim 

drugs reveals the direction of the interaction, which enables the characterization of drug-drug 

interaction networks for identifying promising drug combinations.   
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3    Summary of results 
In this section the three papers that were produced as part of this PhD project are summarised and 

discussed. 

Papers: 

1. Nøhr‐Nielsen A, De Bruin ML, Thomsen M, Pipper CB, Lange T, Bjerrum OJ, Lund TM. Body 

of evidence and approaches applied in the clinical development program of fixed‐dose 

combinations in the European Union from 2010‐2016. Br J Clin Pharmacol. 2019;(July 

2018):1–12. 

2. Nøhr‐Nielsen A, Lange T, Forman JL, Papathanasiou T, Foster DJR, Upton RN, Bjerrum OJ, 

Lund TM. Demonstrating Contribution of Components of Fixed-Dose Drug Combinations 

Through Longitudinal Exposure-Response Analysis. AAPS J 2020 222 22:1–14. 

3. Nøhr‐Nielsen A, Bagger SO, Brünner N, Stenvang J, Lund TM. Pharmacodynamic modelling 

reveals synergistic interaction between docetaxel and SCO-101 in a docetaxel-resistant 

triple negative breast cancer cell line. Eur J Pharm Sci 2020 105315.  
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3.1 Paper 1 - Body of evidence and approaches applied in the clinical 

development program of fixed‐dose combinations in the European Union 

from 2010‐2016 

This study was an analysis of the current state of the clinical development programs of fixed-dose 

combinations. Throughout this summary, the terminology from paper 1 will be used to ensure 

clarity. The study focused on data from the European Union, specifically the fixed-dose 

combinations approved through the central procedure at the EMA. The information regarding the 

approved fixed-dose combinations was obtained from the EPARs. Following a range of selection 

criteria, outlined in Figure 6, the final pool of fixed-dose combinations included in the analysis was 

36. These 36 EPARs included a total of 239 clinical trials and 157.514 patients in their clinical 

development programs. The purpose of the study was to characterize the approved fixed-dose 

combinations, identify the strategies employed to gain approval, and assess the volume of evidence 

in the submissions. An overview of the reviewed EPARs is located in Appendix S2 for paper 1 [5].  

 

Figure 6 – Flowchart showing the identification of excluded and included European Public Assessment Reports (EPARs) 
in paper 1. Distribution of the included EPARs in the anatomical therapeutic chemical (ATC) classification system is shown 
to the left. The condition for “special exclusion condition” are outlined in Appendix S1 of paper 1 [5]. The figure and 
caption are from [5]. 
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3.1.1    Characterization of fixed-dose combinations 

The first metric analyzed in the study is the anatomical therapeutic chemical (ATC) codes. This 

information was extracted from the “Product information and Authorized presentations” 

documents. Based on the classification, three major groups of fixed-dose combinations were 

identified, metabolic diseases, anti-infectives, and respiratory diseases. This finding corresponds 

well with a similar result observed for the FDA, where anti-infectives, metabolic diseases, and 

cardiovascular diseases were the therapeutic areas of greatest interest [100]. Reprofiling of drugs 

was assessed by comparing the ATC codes of components with the ATC code of the parent 

compound. Sharing 0 or 1 level of the ATC code was considered as the drug being reprofiled. A small 

group (6%) of fixed-dose combinations was composed of reprofiled drugs. Hence, the predominant 

strategy within the development was to improve treatment within the existing therapeutic area. 

While small, the group of reprofiled drugs represent an important development path, as it has been 

shown that the success rate is higher and expenses lower for reprofiled drugs [101].  

From the same documents as ATC codes, the number of approved dose levels for each fixed-dose 

combination was extracted. The largest group (58%) of fixed-dose combinations had one approved 

dose level, while the remaining fixed-dose combinations were distributed on two, three, and four 

dose levels. This data was reviewed in the light of the development of personalized medicines, which 

aim to provide treatment tailored to the individual disease [102]. The initial result is that the 

inherent limitation of drugs with a fixed drug dose ratio makes fixed-dose combinations and 

personalized medicines incompatible. However, for the group of fixed-dose combinations with two 

or more dose levels, some level of personalization can be achieved. This flexibility makes the group 

particularly important, as personalized medicines are hailed as a transformation of drug 

development and clinical use [102, 103]. 

The substance status assessed the approval state of the components in each fixed-dose 

combination. Substance status of the fixed-dose combinations was classified as either two-

approved drugs (AD+AD), one approved and one new molecular entity (AD+NME), or two new 

molecular entities (NME+NME). The majority (58%) of the fixed-dose combinations were composed 

of two approved drugs. Consequently, 42% of the fixed-dose combinations contained a new 

molecular entity. Comparing this distribution to the FDA, where only 25.4% contained a new 

molecular entity [100], it seems that there is slightly more focus on including new molecular entities 

in fixed-dose combinations in the European Union. 

Furthermore, substance status was analyzed for its influence on the body of evidence and the 

employed strategies, which is summarized in the following sections.  

3.1.2    Body of evidence  

The body of evidence was assessed with regards to the number of clinical trials, arms, patients, and 

dose levels studied included in the submissions. Furthermore, the data were analyzed with a 

generalized linear model to elucidate the influence of factors such as substance status on the body 

of evidence.  
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The data showed that significantly more clinical trials are performed, and significantly more patients 

are included as part of phase 3 trials than phase 2 trials. For substance status, it was evident that, 

in general, there was an increased amount of evidence as part of the submission as one or more 

new molecular entities were included in the fixed-dose combination. This increase was the case for 

clinical trials, arms, and patients, but interestingly, not for the number of dose levels studied. 

The use of PK-PD modeling and the choice of trial design was also considered in relation to the body 

of evidence. These factors, as employed strategies, will be discussed further in section 3.1.3. 

The use of modeling was extracted from the submission and categorized into three categories: No 

modeling, PK modeling, or PK-PD modeling. Neither the use of PK modeling or PK-PD modeling was 

found to have had a significant effect on the number of clinical trials, arms, nor patients included in 

the submission. However, the use of PK modeling did result in a significant reduction in the number 

of dose levels studied. Based on the result, the study found that understanding the 

pharmacokinetics of potential drug candidates is essential in selecting the right dose. The lack of 

influence on the remaining body of evidence is not in accordance with previously published studies 

[79, 104–106]. This deviation from the literature is thought to arise from the lack of details in the 

use of modeling in the EPARs. Essentially the modeling was analyzed in a yes/no manner that does 

not capture the purposes behind the use of modeling, which in turn might not correspond to the 

purposes investigated in this study. 

The choice of clinical trial design in the dose findings or main pivotal trial was categorized as either: 

 Factorial design: Two or more combinations (different ratio) 

 Ray design: Two or more combinations (same ratio) 

 Single combination: One combination tested 

The influence of clinical trial choice on the body of evidence was significant for the number of 

patients and arms. Here, there were significantly more patients and arms when using a factorial 

design compared to ray design. Naturally, for the number of doses tested, there was significantly 

fewer for single combination compared to factorial design. 

3.1.3    Employed strategies in development 

Whether dose-finding studies were performed during fixed-dose combination development was 

found to be affected by the substance status of the fixed-dose combination. For 57% of the fixed-

dose combinations consisting of two-approved drugs, no dose-finding study was performed. This 

approach is described in the relevant guideline for the analyzed period (2009 guidelines) from the 

EMA [107], and the present study supports that this approach is possible in practice. Additionally, 

the current 2017 guidelines from the EMA includes a section describing the evidence base, 

supporting the same approach [51]. A review of the FDA found a similar result, where approval was 

granted for fixed-dose combinations without completing the full phases of clinical trials [100]. 

Utilizing the existing dose levels does, however, have a drawback, as the exploration of the drug-

drug interaction space could have resulted in more optimal dose levels or ratios. 
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Clinical trial design was evaluated to assess the strategy for fulfilling the requirement of 

demonstrating the contribution of components to the overall effect. Approximately half (47%) of 

the approved fixed-dose combinations had only one dose studied. Furthermore, considering that 

Single combination can be considered a subset of Factorial design, the vast majority made use of a 

factorial design (47+44%). Notably, the 2009 EMA guidelines suggest the use of multilevel factorial 

design, thus, distinguishing between the Single combination and Factorial design groups [107]. 

Finally, few sponsors made use of the ray design (8%).  

Achieving a personalized treatment with a fixed-dose combination requires several approved 

combination doses to be available for patients. Consequently, obtaining approval for these 

combination doses leads to very large factorial design studies. Thus, the extensive use of the 

factorial design within fixed-dose combination development presents a hurdle for personalization 

of treatment with fixed-dose combinations. Alternative approaches to the factorial design study 

may be found in exposure-response modeling or model-based adaptive optimal design, which could 

reduce the need for patients [86, 104]. However, exposure-response analysis of fixed-dose 

combinations has been shown to have an inflated false-positive rate, which makes the approach 

unfeasible [86]. Conversely, longitudinal exposure-response analysis has been shown to provide a 

modeling approach that can reduce the need for patients while producing reliable results [105].  

In the study, it was shown that 42% of the clinical development programs included no modeling, 

36% performed PK modeling, and 22% performed PK-PD modeling. Employing PK-PD modeling can 

utilize the information from early clinical trials to assist in dose selection and provide insights for 

expected effect sizes [108]. Furthermore, characterization of the PK profile with covariates, such as 

weight and age, is essential, as it can enable extrapolation to special populations [109]. Therefore, 

it was surprising that only about half (58%) of the development programs utilized either PK or PK-

PD modeling as a development strategy.  

3.1.4    Conclusions 

In conclusion, the study emphasizes that interesting approaches are being employed in fixed-dose 

combination development, utilizing prior knowledge, not performing dose-finding trials, and 

reprofiling of drugs. Personalization of treatment with fixed-dose combinations could be a 

promising approach to ensure continued increase in the development of fixed-dose combinations, 

however, the extensive use of the factorial design study presents a hurdle for this approach. Lastly, 

given the advantages of performing PK-PD modeling and the low use of modeling in the 

development of fixed-dose combinations shown in this study, developers of fixed-dose 

combinations should to a greater extent consider incorporating the use of modeling in the 

development process. 
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3.2 Paper 2 - Demonstrating Contribution of Components of Fixed-Dose Drug 

Combinations Through Longitudinal Exposure-Response Analysis 
In this study, the focus was on exposure-response modeling of fixed-dose combinations. In a 

previously published study, it was found that analyzing fixed-dose combinations using exposure-

response modeling caused inflated false positive rates, corresponding to finding an effect of a fixed-

dose combination component when the component had no true effect [86]. This inflation of false 

positive rates resulted from confounding factors due to the high correlation between the 

concentrations of two components administered in fixed ratios across multiple dose levels [86].  

3.2.1 Analysis strategy 

This study considered an alternative approach in the form of longitudinal exposure-response 

modeling, which utilizes the entire timecourse of the exposure-response relationship. The 

hypothesis was that since fixed-dose combinations often have endpoints that have a delay in the 

concentration-effect relationship, the advantages of longitudinal exposure-response modeling 

could alleviate the issue with inflation of false positives. 

The entire study was based on the simulation of clinical trials in which the exposure-response and 

longitudinal exposure-response modeling analysis were compared with respect to false positive and 

false negative rates. The simulated PK was nominally based on models for empagliflozin (compound 

A) and linagliptin (compound B), while the simulated PD was based on their combination Glyxambi®, 

which is used for the treatment of T2DM [110–112]. In addition, the influence of the clinical trial 

parameters on the false positive and false negative rates was investigated by including 432 scenarios 

that varied across the following: Drug activity, number of patients, duration, sampling frequency, 

dose distribution, and clinical trial design, Figure 7. Importantly, to evaluate the false positive and 

false negative rates, the drug activity of one compound in the fixed-dose combination was fixed to 

0. The study was performed in R 3.5.1 using the mrgsolve and lme4 packages for simulation and 

analysis, respectively [113–115].  

 

Figure 7 – Flow-chart illustrating the process of the study. Exposure as trough concentrations and response as HbA1c 
levels are sampled pairwise from the simulated data of each scenario. The samples are then analyzed using exposure-
response and longitudinal exposure-response models, and the false positive and false negative rates are computed. 
Lastly, clinical trial parameters across all scenarios are analyzed. The figure and caption are from paper 2. 

3.2.2 Exposure-response analysis 

A two-compartment model with first-order absorption and elimination was used to simulate the 

exposure, sampled as trough concentrations, while an Imax model with an inhibitory effect on the 

formation constant kin constituted the pharmacodynamic model [116].  
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Figure 8 – Pharmacodynamic response (HbA1c [%]) vs. compound A (left panel) and B through concentration (middle 
panel) on a linear and logarithmic scale (embedded graph) as well as PD response vs. time (right panel) across four 
scenarios. Each scenario includes; 60 subjects, 8 samples, and a trial duration of 100 days (A+B), 30 subjects, 4 samples, 
and a trial duration of 20 days (C+D). All scenarios use a multiple dosing scheme and a dose distribution on either side 
of IC50. For scenario A+C, compound A is active, while for B+D, compound B is active. Each data pair is represented by 
dots colored by dose level. The dashed line represents the loess line, and the solid line reflects the underlying relationship 
between PD response and compound concentration. The figure and caption are from paper 2. 

The exposure-response of four simulated scenarios was investigated in detail and is illustrated in 

Figure 8. These scenarios represented what was considered high information and low information 

scenarios in the spectrum of scenarios investigated in the study.  

Panels A+B are high information scenarios with compound A or B active, respectively. Panels C+D 

are low information scenarios with compound A or B active, respectively. From these results, it was 

evident that for the active component in the high information scenarios, the loess fit, based on visual 

inspection, closely matched that of the true exposure-response relationship from the simulation 

model. This was not the case to the same degree for the low information scenarios. However, the 

more interesting part was that while the relationships matched for the active component, the 

inactive components were more erroneously described for the high information scenario. In 

essence, this demonstrated that as the information increased in the clinical trials, the exposure-

response relationship for the active component was better described, but simultaneously, the 

inactive component was worse described. This occurred due to confounding, through the high 

correlation between concentrations of drug combinations administered in fixed ratios.  

A similar result was derived from the exposure-response and longitudinal exposure-response 

analysis of false positive and false negative rates. Here the high and low information scenarios were 

again considered. For exposure-response analysis, it was clear that the high information clinical 

trials lead to an increase in the observed false positive rates compared to the low information clinical 

trials. Ultimately, based on these results, performing exposure-response trials for fixed ratio drug 

combinations will cause a false claim of contribution of the components to the overall efficacy.  

For longitudinal exposure-response, the false positive rates were generally well-controlled across 

all scenarios, which essentially showed that longitudinal exposure-response could be used for the 

analysis of fixed-dose combinations, without risking false claim of efficacy. Except for the high 

information scenario, the false negative rates were generally not well-controlled, especially when 

the intercept was fixed to 0 in the analysis model. This is a common approach when it is known that 

the data must pass through the origin. However, this approach caused high false negative inflation 

for longitudinal exposure-response analysis, which was argued to be caused by an over-simplified 

regression model. Another misspecification in the analysis was for the non-linear models with 

regards to time, as these models showed an increase in false positive rates in the high information 

scenario. In the study, exponential time decay was used for the non-linear description of time [84]. 

The true description of time is more complex, described here [117], than exponential time decay, 

and this simplification may lead to the inflated false positive rates. Another approach that was 

considered was a pharmacometric approach, where more mechanistic models could be employed 

[118]. However, as the simulation study is based on one of these mechanistic models, performing 
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the analysis with the same model would constitute an artificial best-case scenario. A comparison 

between the statistical and pharmacometric approaches could be of interest for future research. 

3.2.3 Clinical trial parameters 

The clinical trial parameters were explored to provide information on how they affect the false 

positive and false negative rates. For exposure-response, the same pattern was found as previously, 

showing that more information, through e.g. more patients, led to higher false positive rates. False 

positive rates for longitudinal exposure-response was not affected by any parameters, 

demonstrating that regardless of scenario, false positive rates are well-controlled. From the clinical 

trial parameters, the most important finding was that the inflated false negative rate for longitudinal 

exposure-response was caused by the scenarios generally providing too little information. Across all 

parameters, false negative rates decreased as more information was included in the trial. Especially 

the sequentially administered doses were essential in controlling the false negative rate. In 

summation, longitudinal exposure-response analysis showed well-controlled false positive rates 

and, given sufficient information corresponding to the high information scenario, also showed well-

controlled false negative rates. 

3.2.4 Discussion 

The hypothesis in this study was that longitudinal exposure-response analysis could be applied to 

fixed-dose combinations without obtaining results with inflated false positive rates. Based on the 

results presented in the study, longitudinal exposure-response analysis can be confidently used as 

the issues with inflated false positive rates observed in the previous study by Zhu and Wang are 

practically eliminated [86]. However, the analysis does have drawbacks. In particular, the sequential 

administration of treatment and adequate coverage of the response-time curve were important in 

identifying the true exposure-response relationship. In combination, these factors will lead to long 

clinical trials, which have higher costs [119]. Conversely, the gain from this analysis is that the 

monotherapy arms used in the conventional factorial clinical trial, which is recommended by EMA 

[51], becomes redundant. By removing these arms, the clinical trial size can either be reduced, thus 

having lower costs, or more patients can be allocated to the combinations, thereby providing more 

information on the fixed-dose combination. A general consideration from the study is that the 

results apply to any fixed ratio drug combination. However, drug combinations given in a defined 

ratio are a common scenario for fixed-dose combinations [120], and the discussion is therefore 

focused on fixed-dose combinations. 

3.2.5 Conclusion 

The conclusion from the study highlights that the previously demonstrated inflated false positive 

rate in the exposure-response analysis was not present when the longitudinal exposure-response 

analysis was performed. Thus, longitudinal exposure-response analysis can be recommended for 

the analysis of fixed-dose combinations or drug combinations in a fixed ratio. It was considered 

whether the results from this analysis would carry regulatory weight, concluding, that at least it 

would provide supportive information regarding the claim of contribution of each component to 

the overall effect. Lastly, carrying out this analysis outside in silico studies would help support the 

validity of longitudinal exposure-response analysis of fixed-dose combinations. 
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3.3 Paper 3 - Pharmacodynamic modelling reveals synergistic interaction 

between docetaxel and SCO-101 in a docetaxel-resistant triple negative 

breast cancer cell line  

In the third paper, a drug combination undergoing investigation for its potential use in breast cancer 

is analyzed using the GPDI model introduced in section 2.3.4. The combination consists of a novel 

compound under investigation, SCO-101, which is hypothesized to enable the treatment of several 

drug-resistant cancers, and docetaxel, which is part of the neoadjuvant treatment for TNBC [121]. 

This paper mainly addresses the modeling and analysis of the data while the cellular, mechanistic, 

and assay aspects are planned for a separate publication by the lab conducting the experiments. 

SCO-101 is hypothesized to enable treatment in drug-resistant cancers through inhibition of the 

ATP-binding cassette ABCG2, which is a human multidrug transporter [122, 123]. The protein is 

responsible for the efflux of commonly used pharmaceuticals and thereby contributes to drug 

resistance in cancers [123]. Furthermore, a phase II clinical study of SCO-101 in combination with 

FOLFIRI is planned in patients with colorectal cancer using the same rationale [124]. FOLFIRI is an 

established regiment for the treatment of colorectal cancer [124]. 

The development of drug resistance is one of the primary barriers in treating patients suffering from 

cancer [14, 125]. In theory, targeting drug efflux pumps enables several potential substrates. TNBC 

is outlined in section 2.2.2 and represents a cancer subtype with a very poor prognosis and a high 

degree of drug resistance. This makes TNBC a good candidate for investigating potential treatment 

improvement through the addition of SCO-101 to the existing regiment. Therefore, the effects of 

SCO-101, docetaxel, and the combination was investigated in a docetaxel resistant TNBC cell line, 

MDA-MB-231. 

Pharmacodynamic modeling was conducted as an alternative to more conventional approaches, 

such as analysis using t-tests or ANOVA. The hypothesis here was that more information could be 

extracted from the data by employing the GPDI model, which provides a semi-mechanistic 

understanding of the combination, as opposed to considering whether there are significant 

differences in cell survival between groups.  

3.3.1    Monotherapy models 

The initial strategy was to establish the concentration-effect relationship for docetaxel and SCO-101 

administered separately. The four relationships, linear, log-linear, Imax and sigmoidal Imax in EQ7 was 

considered for both drugs. The parameters in the models are outlined in section 2.3.2. The 

relationship for docetaxel was best described by an Imax model, while the best description was 

achieved for SCO-101 with a sigmoid Imax model based on the OFV. The model fits plotted on top of 

the observed data from the experiments can be seen in Figure 9. 

 𝐼𝑑𝑟𝑢𝑔 = α ∙ 𝐶𝑑𝑟𝑢𝑔 + β    ;    𝐼𝑑𝑟𝑢𝑔 = α ∙ log (𝐶𝑑𝑟𝑢𝑔) + β 

𝐼𝑑𝑟𝑢𝑔 =
𝐼𝑚𝑎𝑥,𝑑𝑟𝑢𝑔∙𝐶𝑑𝑟𝑢𝑔

𝐼𝐶50,𝑑𝑟𝑢𝑔+𝐶𝑑𝑟𝑢𝑔
    ;    𝐼𝑑𝑟𝑢𝑔 =

𝐼𝑚𝑎𝑥,𝑑𝑟𝑢𝑔∙𝐶𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔

𝐼𝐶50,𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔
+𝐶𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔
 

(EQ7) 
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Figure 9 – MDA-MD-231 survival following monotherapy with docetaxel (A+B) or SCO-101 (C+D). The blue dots represent 
the samples from the experiment, while the black line corresponds to average cell survival. The red dashed line represents 
the fitted curve for docetaxel (Imax model) and SCO-101 (sigmoid Imax model). B and D contain the same data as A and C, 
respectively, but on a logarithmic scale. The figure and caption are from paper 3 [126]. 

For the data presented in Figure 9, the y-axis represents cell survival measured as optical density, 

where ~0.3 OD corresponds to ~100% cell survival. The model parameters showed that the two 

compounds had similar maximal effects, albeit with less certainty of the estimate for SCO-101. The 

maximal effect for docetaxel was around 80%, with a half-maximal inhibitory concentration of 0.413 

µM. These parameter values were in agreement with a previous study of docetaxel in docetaxel 

resistant MDA-MB-231 cells [127]. The cytotoxicity of SCO-101 alone could be attributed to the 

inhibition of SRPK1 kinase, which is involved in tumor growth [124]. 

3.3.2    Combination model 

Following the development of the monotherapy models, several combination models were 

evaluated. These included Response Additivity [20], Bliss Independence [92], and finally, a general 

pharmacodynamic interaction model [99] of the best fit between the two. Bliss Independence 

provided the better model fit and was used as the basis for the GPDI model, which is outlined in 

EQ8.  

𝐼𝐷𝑜𝑐𝑒 =
𝐼𝑚𝑎𝑥,𝐷𝑜𝑐𝑒 ∙ 𝐶𝐷𝑜𝑐𝑒

𝐼𝐶50,𝐷𝑜𝑐𝑒 ∙ (1 +
𝐼𝑁𝑇𝑚𝑎𝑥,𝑆𝐶𝑂→𝐷𝑜𝑐𝑒 ∙ 𝐶𝑆𝐶𝑂

𝐼𝑁𝑇50,𝑆𝐶𝑂→𝐷𝑜𝑐𝑒 + 𝐶𝑆𝐶𝑂
) + 𝐶𝐷𝑜𝑐𝑒

  ;  𝐼𝑆𝐶𝑂 =
𝐼𝑚𝑎𝑥,𝑆𝐶𝑂 ∙ 𝐶𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔

𝐼𝐶50,𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔 + 𝐶𝑑𝑟𝑢𝑔

𝐻𝑑𝑟𝑢𝑔
 

(EQ8) 
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Other variants of the GPDI model were investigated with a 1-way interaction in the opposite 

direction of EQ8 and with a 2-way interaction between the drugs. However, these models 

encountered boundary errors and issues with minimization even with several fixed parameters. 

Therefore, the model in EQ8 was considered to provide the best fit.  

The most interesting parameters extracted from the model were the 𝐼𝑁𝑇𝑚𝑎𝑥,𝑆𝐶𝑂→𝐷𝑜𝑐𝑒 designating 

the maximal interaction effect of SCO-101 on the potency of docetaxel, and 𝐼𝑁𝑇50,𝑆𝐶𝑂→𝐷𝑜𝑐𝑒 the 

concentration of SCO-101 for half-maximal interaction with docetaxel. The maximal interaction 

𝐼𝑁𝑇𝑚𝑎𝑥,𝑆𝐶𝑂→𝐷𝑜𝑐𝑒 was estimated to -0.604, which can be interpreted as an approximately 60% 

increase in the potency of docetaxel at maximum interaction effect when SCO-101 is administered 

with docetaxel. The half-maximal concentration of the interaction 𝐼𝑁𝑇50,𝑆𝐶𝑂→𝐷𝑜𝑐𝑒 was estimated to 

30.9 µM, which is approximately half of the IC50 for the compound itself, which is 59.4 µM.  

 

 

Figure 10 – Contour plot of the final general pharmacodynamic interaction model. The lines indicate four separate 
response levels of 0.1 OD, 0.07 OD, 0.05 OD, and 0.03 OD across the dose combination space. 0.05 OD corresponds to 
the 85% reduction in cell viability target. The four dots highlight dose pairs that result in meeting this target, through 
lowest total dose combination (red), minimized exposure to both compounds (green), and with a weighted penalty factor 
of 2 on lowest total dose combination (orange) and minimized exposure (yellow). The figure and caption are from paper 
3 [126]. 
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The model was used to provide information on dose ratios for further studies. These estimations 

were based on locating the lowest total drug combination and the minimized exposure to both 

compounds. The former of the two methods was based on the addition of scaled doses, and the 

latter was based on Pythagoras’ theorem. Lastly, as docetaxel represented the more toxic of the 

two compounds, a penalty was considered. The resulting contour plot from the model and the 

optimal dose ratios are illustrated in Figure 10. 

The optimal dose ratios were based on the selected effect target of 85% reduction in cell survival 

and resulted in dose ratios between 1:40 and 1:64 (docetaxel:SCO-101) being promising for further 

analysis. 

3.3.3    Discussion 

Preclinical modeling of cancer therapeutics has previously been performed as outlined in section 

2.3.4. Some of the core issues that arise from these models are the lack of interpretability of the 

results and selection of an additivity criterion. The lack of interpretability in these models stems 

from describing the drug effect through kill rates. Here the empirical nature of the GPDI model 

provides results expressed as maximal effects and half-maximal concentrations, which can be 

considered more intuitive. Selecting an additivity criterion causes the classification of a combination 

as either synergistic or antagonistic to be dependent on assumptions tied to the specific additivity 

criterion. As an example, selecting Bliss Independence includes base assumptions of the underlying 

mechanism of the combined drugs, i.e. that they act independently [91, 92]. The GPDI model unifies 

the interpretation of these additivity criteria in a model-based framework, which addresses the 

issues with selecting an additivity criterion [99]. 

A simpler approach would be to employ a more conventional analysis such as t-tests or ANOVA. 

These methods avoid some of the limitations of the modeling approach, such as selecting an 

additivity criterion, establishing a model, and the interpretability of the results. However, as 

highlighted in the following paragraphs, using models such as the GPDI model provides significant 

insights into drug-drug combinations that go far beyond a comparison of groups. 

The potency of the interaction 𝐼𝑁𝑇50,𝑆𝐶𝑂→𝐷𝑜𝑐𝑒 was estimated to 30.9 µM. This corresponds to half 

the concentration needed to reach the half-maximal effect on cell survival of SCO-101, which has 

an IC50 of 59.4 µM. The essence of this discovery was that at concentrations near the half-maximal 

concentration of the interaction, the effect of SCO-101 is primarily mediated through its interaction 

with docetaxel. Thus, depending on tolerability for SCO-101 the primary treatment capacity of SCO-

101 will be its interaction with docetaxel. Usually, the underlying implicit assumption is that the 

drug effect and interaction share the same potency [127]. Estimating the potency of the interaction 

is a key trait of the GPDI model, which provided important information on the difference between 

the potency of SCO-101 and the potency of its interaction with docetaxel. 

The maximal interaction effect 𝐼𝑁𝑇𝑚𝑎𝑥,𝑆𝐶𝑂→𝐷𝑜𝑐𝑒 was estimated to -0.604. This corresponds to a 60% 

reduction in the half-maximal concentration of docetaxel when administered in combination with 

SCO-101 compared to when docetaxel is administered alone. By estimating the maximal interaction, 

the GPDI model provides a semi-mechanistic understanding of the interaction. Two clinical 



 

 

P a g e | 45 

implications arise from this parameter. Either the dose of docetaxel can be reduced when given in 

combination with SCO-101, reducing toxicity but maintaining the same effect, or the dose of 

docetaxel can be maintained, thus attaining a higher effect with no additional side effects from 

docetaxel. Identifying victim and perpetrator drugs in the combination is an implicit part of the GPDI 

model, which enables the identification of interaction networks for large combination analyses [99]. 

Overall, analysis of the combination data using modeling provided significant insights over 

conventional approaches such as t-tests or ANOVA. 

The clinical relevance of the doses for both SCO-101 and docetaxel should also be considered. SCO-

101 was found to have limited toxicity when administered alone, indicating that there will be few 

potential issues with the doses [122, 128]. However, to the knowledge of the authors, no concrete 

information on the plasma concentration of SCO-101 is available, thus, evaluation of the clinical 

relevance of the SCO-101 concentration can be considered speculation. Conversely, the 

pharmacokinetics of docetaxel are well documented. A pharmacokinetic analysis of docetaxel found 

the median Cmax to be 3.7 µM and the range to span 2.6-6.9 µM in patients receiving 100 mg/m2 

docetaxel [129]. These values correspond well with the investigated range of docetaxel 

concentrations in the present study making them relevant from a clinical perspective. Furthermore, 

the identified optimal dose pairs in the study all recommend doses of docetaxel below the median 

Cmax of 3.7 µM. Thus, the recommendations for the drug-drug ratio of SCO-101 and docetaxel seem 

sensible.  

Assessing the potential of a drug combination in humans, based on in vitro experiments, is 

challenging. The increase in complexity from in vitro to in vivo is immense. The effects of aspects 

such as ADME and cellular aspects such as the immune system make extrapolation unreliable. One 

approach that can assist in utilizing in vitro data for extrapolation to in vivo is in vitro in vivo 

extrapolation (IVIVE). IVIVE makes use of modeling and simulation to make quantitative 

extrapolation of drug exposures [130, 131]. The major determinants for this method is establishing 

a physiologically based model and carrying out in vitro studies of solubility in GI fluid and 

permeability [130]. Overall, this presents a fairly complex process but could provide a method for 

extrapolating the combination data. However, realistically, to make confident conclusions about the 

combination in humans, studies in vivo and in humans will be required.  

3.3.4    Conclusion 

In conclusion, a model describing the pharmacodynamics of the combination of SCO-101 and 

docetaxel was established. Based on the information from this model, it can be concluded that the 

novel compound SCO-101 has the potential to provide a significant improvement in the treatment 

of docetaxel resistant TNBC when administered in combination with docetaxel. Modeling the in vitro 

data provided significant insights into the combination compared to conventional approaches 

through estimation of the maximal interaction and the potency of the interaction. Furthermore, the 

information from the model enabled recommendations on the optimal drug-drug ratio. Lastly, the 

study serves as a case study of the GPDI model, which was shown to offer significant advantages 

over conventional methods. 
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4    Conclusions and Perspectives for further research 
Based on the research conducted in this PhD thesis, three papers were published: 

1. Nøhr‐Nielsen A, De Bruin ML, Thomsen M, Pipper CB, Lange T, Bjerrum OJ, Lund TM. Body 

of evidence and approaches applied in the clinical development program of fixed‐dose 

combinations in the European Union from 2010‐2016. Br J Clin Pharmacol. 2019;(July 

2018):1–12. 

2. Nøhr‐Nielsen A, Lange T, Forman JL, Papathanasiou T, Foster DJR, Upton RN, Bjerrum OJ, 

Lund TM. Demonstrating Contribution of Components of Fixed-Dose Drug Combinations 

Through Longitudinal Exposure-Response Analysis. AAPS J 2020 222 22:1–14. 

3. Nøhr‐Nielsen A, Bagger SO, Brünner N, Stenvang J, Lund TM. Pharmacodynamic modelling 

reveals synergistic interaction between docetaxel and SCO-101 in a docetaxel-resistant triple 

negative breast cancer cell line. Eur J Pharm Sci 2020 105315. 

The studies covered in each of the three papers addressed the overall aim and the three objectives 

outlined in section 1.  

The first objective was to assess the current practice of the use of modeling as a drug development 

tool for the development of fixed-dose combinations in the European Union. This was achieved in 

paper 1: “Body of evidence and approaches applied in the clinical development program of fixed‐

dose combinations in the European Union from 2010‐2016”. In the study, it was shown that only 

58% of approved fixed-dose combinations made use of PK or PK-PD modeling during development. 

Given the advantages outlined in the discussion of paper 1 (section 3.1.3), this was surprising. The 

main application of this result is that developers of fixed-dose combinations should to a greater 

extent consider incorporating the use of modeling in the development process. Other novel results 

from the study include that: 

 Performing PK modeling lead to significantly fewer doses investigated 

 Components of the fixed-dose combinations are to a small degree reprofiled (6%) 

 Fixed-dose combinations approved by EMA primarily consist of two previously approved 

drugs (71%) and have a single approved combination dose (71%) 

 No dose-finding trial was conducted for more than half of fixed-dose combinations 

composed of two previously approved drugs (57%) 

The main limitation of the study, for achieving the first objective in the thesis, was that the EPARs 

contain no information on the actual models or the purpose for employing them. Therefore, the 

study assessed the use of modeling in a yes/no manner. This limitation was highlighted by the fact 

that PK-PD modeling was shown to have no impact on the number of patients, arms, clinical trials 

or doses tested, which is not in agreement with previously published studies [79, 104–106].  

The continuance of this research would need to address this limitation by analyzing more detailed 

information regarding the modeling conducted for the development of fixed-dose combinations. 

Particularly with a focus on the type of model and the purpose for employing it. 
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In summation, the first objective of the thesis was fulfilled, however, more in-depth knowledge on 

the use of modeling as a drug development tool for the development of fixed-dose combinations in 

the European Union can be gained by performing the suggested studies. 

The second objective was to develop new methods that may assist in the drug development process 

of fixed-dose combinations. This was achieved in paper 2: “Demonstrating Contribution of 

Components of Fixed-Dose Drug Combinations Through Longitudinal Exposure-Response Analysis”. 

In this in silico study, the applicability of performing longitudinal exposure-response modeling in the 

development of fixed-dose combinations was shown. Utilizing longitudinal exposure-response in 

this setting constituted a new method for demonstrating the contribution of the components to the 

overall effect without an inflated false positive rate, which had been present for exposure-response 

analysis in a previous study [86]. 

The application of this research is that the monotherapy arms used in the conventional factorial 

clinical trial can be eliminated as they are not required for this type of analysis. The gains from 

removing these arms are either allocation of more patients to the combination arms or reduction 

in clinical trial size. Thus, there is either an increase in information on the combination or a reduction 

in cost and the number of patients needed to treat. Additional novel results included the influence 

of several parameters on the false positive and false negative rate in both exposure-response and 

longitudinal exposure-response analysis. In particular, the sequential administration of the doses in 

the clinical trial and adequate coverage of the response-time curve was essential in identifying the 

true exposure-response relationship. 

The primary limitation of the findings in this study originate from the in silico setting. This setting 

has overarching assumptions about the parameter choices for both the simulated compounds and 

clinical trials. The most important assumption was that the chosen parameters reflect a realistic 

setting. To expand upon this research, it will be important to apply longitudinal exposure-response 

modeling to data from previously conducted clinical trials and assess if the results match those from 

the original methods. Additionally, defining the longitudinal exposure-response model a priori and 

analyzing clinical trial data will verify the applicability of the method. 

Based on the research in paper 2 the second objective has been achieved. While longitudinal 

exposure-response modeling is not in itself a new method, the application of the method for fixed-

dose combinations is novel and will aid in the development of fixed-dose combinations.  

The third objective was to validate combination models on preclinical data of a combination under 

investigation and assessing the value of applying these models in guiding further investigations of 

the combination. This was achieved in paper 3: “Pharmacodynamic modelling reveals synergistic 

interaction between docetaxel and SCO-101 in a docetaxel-resistant triple negative breast cancer 

cell line”. 

In this in vitro study, a combination of the novel compound SCO-101 and docetaxel was used for the 

treatment of docetaxel resistant TNBC and analyzed using PD modeling. Several models were 

evaluated and the best model fit was found to be the GPDI model. Based on this model, it was found 

that SCO-101 interacted with docetaxel, leading to a maximal reduction in the IC50 value of docetaxel 

by 60%. Therefore, the combination was characterized as synergistic. Analysis of the model 
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identified optimal drug-drug ratios between 1:40 and 1:64 (docetaxel:SCO-101). Furthermore, the 

study also presents a case study of the GPDI model, which is a fairly recently developed model [99]. 

The application of these results is that the combination of SCO-101 and docetaxel has the potential 

to provide a significant improvement in the treatment of docetaxel resistant TNBC and is therefore 

worth further investigation. Furthermore, the research highlights that the parameters from the 

GPDI model led to a greater understanding of the drug-drug interaction than conventional 

approaches and provided valuable information to guide further investigations through dose ratio 

selection. 

A key limitation of modeling in vitro studies is the very controlled setting that it represents. The 

established model showed very low uncertainty in the parameters, which is unfeasible in more 

variable settings such as in vivo. Furthermore, cellular aspects such as the presence of the immune 

system could potentially influence the efficacy of the combination. Thus, to provide confident 

conclusions about the application of the combination in humans, more studies of the combination 

in vivo and in clinical trials will be necessary. 

Combination models were validated on preclinical data of a combination under investigation and 

the value of the model in guiding further investigations was assessed in paper 3. Based on this, the 

third objective of this thesis was achieved.  

The work of this PhD thesis and previous works highlights both the pitfalls and potential advantages 

of utilizing model-based approaches for the development of fixed-dose combinations. The overall 

aim of this thesis was accomplished as the use of several model-based approaches has been 

explored, developed, and demonstrated within the field of fixed-dose combinations and the 

development of these products. Based on the research conducted in this thesis, the overall 

recommendation is that modeling tools should to a greater degree be incorporated in the 

development of fixed-dose combinations as they assist in determining efficacy and provide valuable 

information to guide drug development.  
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